The following problems use the data in the table below showing the weight of a female golden retriever puppy.

Days old	1	2	3	4	5	6	7	8	9	10	11	12
Weight (oz)	12.51	13.83	14.94	16.3	17.98	19.56	21.13	22.96	24.22	26.53	28.57	30.33
Residuals												

- 1. Create a scatterplot for this data.
- 2. The LSRL for this data is y = 1.63x + 10.15. Interpret the slope and *y*-intercept.
- 3. The correlation coefficient for this data and your LSRL is r = 0.997? What does this tell you?
- 4. What is the value of R^2 ? Interpret what this means for this situation.
- 5. Complete the third row of the table for the residuals. Based on the residuals (and the residual plot), do you think a LSRL is the best model for this data? Why or why not? Explain.
- 6. What would be the equations for the upper and lower bounds for the LSRL?
- 7. Does this model imply that the number of days old a puppy is, causes the weight of the puppy? Explain.
- 8. Explain the strengths and weaknesses of using the LSRL to model this data. Do you feel comfortable using it to make predictions? Explain.